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A "temperature-step method" is proposed for the measurement of temperature 
distribution along a sample from which a differential coefficient of ther- 
mal conductivity is determined. The physical meaning of the difference 
coefficient of thermal conductivity as an average value for a given tem- 
perature range is emphasized. The possibility of making exact measurements 
of an integral coefficient of thermal conductivity is justified. 

Determination of the coefficient of thermal conductivity is based on the Fourier 
equation representing the relation between the thermal flux density q and the tempera- 
ture gradient grad T, 

q = - -  K grad  T. ( 1 )  

We consider stationary methods for the determination of the coefficient of thermal con- 
ductivity K, which is the proportionality factor in Eq. (i). Experimental stationary 
methods for the determination of K may be based either on direct determination of the 
physical quantities appearing in Eq. (i) or on certain variations of the experimental 
methods of measurement required by transformations of Eq. (i). 

The aim of this paper is a comparison and discussion of the experimental condi- 
tions needed for making measurements to determine the coefficient of thermal conductiv- 
ity by the three methods mentioned in the title. 

Differential Method for Measuring the Temperature Dependence of the Coefficient 
of Thermal Conductivity. The Fourier equation (i) for the one-dimensional case 

d T  ( 2 )  
q = - -  K d ( T )  - -  

dx  

is the basis for our discussion of the differential method of measurement. 

It is necessary to determine the local value of the temperature gradient dT/dx in 
order to calculate the coefficient of thermal conductivity Kd(T). At the present time, 
there are no instruments for measuring local values of the temperature gradient. If 
we know the temperature distribution along a Specimen, we can determine the local value 
of the temperature gradient by analytic or graphic methods. The temperature distribu- 
tion T(x) can be measured by means of a series of thermometers which are in thermal con- 
tact with the specimen or by means of only one thermometer which slides along the spe- 

cimen. 

In both cases, a specimen with a sufficient degree of uniformity is required, and 
one with a length which is determined by the number of points at which we intend to 
measure the temperature. There is no sense in reducing the spacing between thermometers 
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to less than 1 cm if only because the location uncertainty of the thermal attachment 
of a thermometer is of the order of 1 mm. 

We propose a method for the determination of the temperature distribution along a 
uniform sample by means of only two thermometers. This method is very suitable in the 
low-temperature region and its advantage is that it can be used for all specimens 
ordinarily tested. A necessary condition for the application of the proposed method 
of "successive temperature steps" is the capability of controlling in a given manner 
the temperature of the cold block to which the test specimen is attached. 

We first establish the thermal-flux density flowing along the specimen. 

When the temperature of a copper block is iTbl , let a thermometer located near the 
heater indicate a temperature T= and a thermometer near the cold block indicate a tem- 
perature T~. The next step is adjustment of the temperature of the copper block to 
2Tbl (for example, by an increase in temperature) in such a way that the thermometer 
near the cold block (previously indicating a temperature T~) reaches the temperature 
T2 (previously indicated by the thermometer near the heater). Now the thermometer 
near the heater reaches the temperature T3. Each succeeding n-th temperature step will 
consist of a selection of the temperature nTbl of the copper block such that the therm- 
ometer near the cold block reaches the temperature T n (which the thermometer at the 
heater had indicated previously) and the thermometer near the heater will now indicate 
a new temperature Tn+~ , etc. One can also change the temperature of the copper block 
by reducing the temperature if there are experimental capabilities to do this. 

Using the method of "successive temperature steps" given above, one can determine 
the temperature distribution along a uniform hypothetical specimen with a length nAx 
(where n is the number of temperature steps and Ax is the spacing between the two 
thermometers). Thus, the differential method for the determination of Kd(T) becomes 
completely achievable in an actual experimental device for low-temperature studies of 
thermal conductivity. The method of temperature steps has already been used [i]. 

Difference Method for Measuring the Temperature Dependence of the Coefficient of 
Thermal Conductivity. The Fourier equation written in the form of the difference equa- 
tion 

T2 - -  T1 (3) q=--Rp(T1, T~) Ax 

is the basis for the most widely used difference method for the determination of the 
coefficient of thermal conductivity. Since the coefficient of thermal conductivity 
generally depends on temperature, the proportionality factor Kp is some average value 
[2, 3] in the temperature range T2-TI. 

The stronger the temperature dependence of the thermal conductivity of the test 
specimen, the smaller need be the temperature difference AT = T= -- TI between thermom- 
eters. The accuracy in determination of temperature is of the order of 10-3~ for the 
best low-temperature thermometers so that the AT which is maintained between thermom- 
eters cannot be less than 10-1~ in order that the error in the determination of AT not 
exceed a few percent. If the test specimen is characterized by a very steep dependence 
K(T), it can turn out that the coefficient of thermal conductivity determined by the 
difference method will differ greatly from the values of the thermal conductivities 
K(T) and K(T • ATI) at the temperature points even for a temperature range AT~ = 10-~~ 

The percentage error in the determination of Ax increases as the distance between 
thermometers decreases; this distance should not be less than i0 mm. 

The average temperature gradient AT/Ax appearing in Eq. (3) can be equated to the 
local value of the gradient dT/dx appearing in Eq. (2) only for the case of linear tem- 
perature distribution along the specimen. 

For the general case of nonlinear temperature distribution, one can formally write 
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lirn AT d T  
- -  -* - -  (4) argo Ax  dx  

Ax~O 

However, condition (4) is unrealizable in practice. Under actual experimental condi- 
tions we have 

lim AT ATmi n d T  _ _ ~  ~__, (5) 

aT~ATmin AX AX 0 dx  
Ax=Axo=const 

where ATmi n is of the order of 0.1~ and Axo is of the order of i cm. 

Because of Eq. (5), we always have 

lira Kp (T + AT) :/: Kd(T ). (6) 
A T ~ A T  I 

The discrepancy between Kp(T + AT) and Kd(T) for uniform specimens will be more marked 
the greater the value of dK/dT in the temperature range AT. 

Knowing the relation Kd(T ) and the analytic expression for Kp(T + AT), one can ex- 
press ~(Kd) mathematically. The physical significance of the gradient AT/Ax appearing 
in Eq. "(3) is that we formally replace the actual nonlinear temperature distribution 
by a linear distribution. All the consequences of this method have an effect on the 
physical content of the difference coefficient of thermal conductivity, Kp(T + AT), 
defined by Eq. (3). 

So-Called Integral Method for Measuring the Temperature Dependence of the Coeffi- 
cient of Thermal Conductivity. By modifying the technique of the difference method 
for measuring the coefficient of thermal conductivity, one can create conditions for 
the realization of the so-called integral method of measuring the coefficient of therm- 
al conductivity. For this purpose, it is necessary to maintain a constant temperature 
at thermometer 2 (which is located close to the cold block), for example, and to mea- 
sure the change in temperature at thermometer 1 (near the heater) as a function of the 
change in thermal flux density flowing along the specimen. The constancy of the tem- 
perature at thermometer 2 can be achieved by controlling the temperature of the cold 
block in a given manner. An expression for the coefficient of thermal conductivity de- 
termined by the integral method can be obtained in the following manner (noting only 
some comments in [4] and [5]): 

dT 
q = - - K ( T ) - -  (7) 

dx 

Separating variables and integrating, we have 

l T 

q d x = - -  j" K ( T ) d T .  
0 To=const 

(8) 

From Eq. (8) we obtain 

ql = - -  [• (T) - -  • (To)l, 

where K is a function satisfying the condition 

d• = K (T) dT.  

Differentiating both sides of Eq. (9), we have 

(9) 

(lo) 

Idq = - -  K i (T) dT,  (11) 
whence 
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K~ (T) = - t dq 
dT (12) 

Ki(T) is the coefficient of thermal conductivity determined by the integral method 
which is related to a given temperature T. 

For measurements of Ki(T) , it is necessary to determine the change in temperature 
at thermometer 1 as a function of the change in the thermal-flux density q. The tem- 
perature at thermometer 2 must be maintained constant during this time; this can be ac- 
complished by means of a device for temperature control and stabilization. 

We take the temperature at thermometer 1 under stationary conditions. 

Comparing Eqs. (2) and (12), we see that the coefficients'Kd(T) and Ki(T) are de- 
fined for a given, rigorously established temperature T while the coefficient Kp is 
defined by Eq. (3) in the temperature range T + AT. It therefore makes sense to ask 
how well experimentally determined values of Kd(T) and Ki(T) agree. 

At the present time, there are possibilities for making precise measurements of 
the coefficient of thermal conductivity by the differential and integral methods. Thus 
far, such comparison measurements have not been made. We have used the "temperature- 
step method" to determine the thermal Conductivity Kd(T) of an Ag test specimen [i]. 

Detailed methodological analysis of the integral method for measuring thermal con- 
ductivity and its comparison with the differential method will be the subject of a 
separate publication. 

Comparison of the coefficient of thermal conductivity Kp determined by the differ- 
ence method with the coefficient of thermal conductivity K d determined by the differen- 
tial method is only possible in the case of a known analytic relation between Kp and K d. 

Some remarks about the possibilities of determining Kp have been made [6]. 

Using the temperature-step method, we can measure the temperature distribution 
T(x) with sufficient accuracy for a given stationary thermal-flux density q. If we 
know the distribution T(x), we can determine the coefficient ot thermal conductivity 
Kd(T) by the differential method on the basis of Eq. (2). 

In the most common difference method for the determination of the coefficient of 
thermal conductivity Kp, two thermometers are used at a spacing of Ax to determine the 
temperature difference T2 -- TI. Equation (3) is the basis for the determination of 
the coefficient Kp. In principle, the coefficient ~(T + AT) can never agree with the 
coefficient Kd(T) and this disagreement is greater e steeper the temperature depend- 
ence of thermal conductivity. 

The so-called integral method for the determination of the coefficient of thermal 
conductivity Ki(T ) [Eq. (12)] is based on certain experimental modifications of the 
preceding methods. In this case, one must maintain a constant temperature at one of 
the thermometers and determine the change in temperature at the other thermometer as a 
function of the stationary thermal-flux density flowing along the specimen. 

It appears advisable to make an exact experimental comparison of the coefficients 
Kd(T ) and Ki(T) measured by the differential and integral methods in the region of 
strong temperature dependence of thermal conductivity. 

The author thanks E. Troinar for reading the Russian manuscript of the paper. 

NOTATION 

q is the heat-flux density; grad T is the temperature gradient; K is the thermal 
conductivity; K d is the thermal conductivity predicted by using differential methods; 
dT/dx is the local temperature gradient value; T(x) is the temperature distribution; 
iTbl (i = i, 2, ..., n) is the heat sink temperature; T i is the temperature of thermom- 
eters on the sample; n is the number of temperature steps; hx is the distance between 
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thermometers; Kp(T + AT) is the thermal conductivity determined by the difference 
method; hT/hx is the mean-temperature gradient; ~ is the distance of the thermometer 
from isothermal surface normal to the heat flux; To is the constant temperature of iso- 
thermal surface; Ki(T) is the thermal conductivity determined by the integral method. 
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